R语言分布滞后线性和非线性模型(DLNM)分析空气污染(臭氧)、温度对死亡率时间序列数据的影响

R语言分布滞后线性和非线性模型(DLNM)分析空气污染(臭氧)、温度对死亡率时间序列数据的影响

摘要 分布滞后非线性模型(DLNM)表示一个建模框架,可以灵活地描述在时间序列数据中显示潜在非线性和滞后影响的关联。该方法论基于交叉基的定义,交叉基是由两组基础函数的组合表示的二维函数空间,它们分别指定了预测变量和滞后变量的关系。本文在R软件实现DLNM,然后帮助解释结果,并着重于图形表示。本文提供...

R语言KERAS用RNN、双向RNNS递归神经网络、LSTM分析预测温度时间序列、 IMDB电影评分情感

R语言KERAS用RNN、双向RNNS递归神经网络、LSTM分析预测温度时间序列、 IMDB电影评分情感

在这篇文章中,我们将回顾三种提高循环神经网络的性能和泛化能力的高级方法。我们将在一个温度预测问题上演示这三个概念,我们使用来自安装在建筑物屋顶的传感器的数据点的时间序列。 概述 安装在建筑物屋顶的传感器的数据点的时间序列,如温度、气压和湿度,你用这些数据点来预测最后一个数据点之后24小时的温度。这是...

大数据之R语言速成与实战

30 课时 |
18022 人已学 |
免费
开发者课程背景图
R语言arima,向量自回归(VAR),周期自回归(PAR)模型分析温度时间序列

R语言arima,向量自回归(VAR),周期自回归(PAR)模型分析温度时间序列

至少有两种非平稳时间序列:具有趋势的时间序列和具有单位根的时间序列(称为单整时间序列)。单位根检验不能用来评估时间序列是否平稳。它们只能检测单整时间序列。季节性单位根也是如此。 这里考虑月平均温度数据。 > mon=read.table("temp.txt") > ...

R语言基于递归神经网络RNN的温度时间序列预测

R语言基于递归神经网络RNN的温度时间序列预测

在本文中,我们将介绍三种提高循环神经网络性能和泛化能力的高级技术。我们演示有关温度预测问题的三个概念,我们使用建筑物屋顶上的传感器的时间数据序列。 概述 在本文中,我们将介绍三种提高循环神经网络性能和泛化能力的高级技术。在最后,您将了解有关将循环网络与Keras一起使用的大部分知识。您可以访问来自建...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。